

Adapter Plus with Two way Raspberry Pi Transceiver board

Introduction:

The ENER314-RT add-on board can be used to Control devices and monitor devices requiring 433 MHz ISIM band control directly from a Raspberry Pi equipped with the radio transceiver PCB which incorporates a radio receiver and a transmitter. The ENER002 Control Adapter is part of the Energenie home automation range. The Control Adapter allows you to switch the power on or off.

Instructions: Preparation

Connect the Energenie RT board to the raspberry pi as shown in figure 1. Connect the raspberry pi to a USB port using a micro USB to USB cable. Connect a HDMI cable from the raspberry pi to the monitor. The cable can be connected to a computer, laptop or adapter which is switched on. Once the raspberry pi has booted to the desktop ensure that the RT board software (pyenergenie-master.zip which can be downloaded from

https://github.com/Energenie/pyenergenie) has been saved unto the raspberry pi.

Figure 1

Instructions: Software

You will find the following python scripts when you unzip pyenergenie-master.zip:

- Legacy.py (This script is compatible with the following products)
 - o ENER002

•

- o ENER010
- o MIH0002
- MIH0007
- o MIHO008
- o MIHO014
- Monitor.py (This script is compatible with the following products)
 - o MIHO004
 - o MIHO005
 - o MIHO013
- Switch.py (This script is compatible with the following products)
 - o MIHO005

Instructions: Switching the Control Adapter

You will be able to switch the Control Adapter. Legacy.py script will switch the Control Adapter.

- 1. Use the Download As Zip link to the right of this page: <u>https://github.com/Energenie/pyenergenie</u>
- unzip the software unzip pyenergenie-master.zip cd pyenergenie-master cd src
- 3. Run the legacy test program with control adaptors. This will This will initiate the learning procedure **sudo python Legacy.py**

Press <u>Y</u> for yes or <u>N</u> for n. Follow the on screen instructions. Put the sockets into learning mode!

💻 pi@raspberrypi: ~/pyenergenie-master/src	_ - ×
File Edit Tabs Help	
<pre>pi@raspberrypi:~ \$ cd pyenergenie-master/src/ pi@raspberrypi:~/pyenergenie-master/src \$ sudo python legacy.py warning: method is untested:<function 0x76ac72b0="" at="" receive_len=""> starting legacy switch tester radio init radio as 00K Do you want to program any switches? y Learn switch 1? y Press the LEARN button on any switch 1 for 5 secs until LED flashes press ENTER when LED is flashing ON Device should now be programmed Testing OFF</function></pre>	
ON OFF	
OFF ON	
OFF ON Test completed	
Learn switch 2?	

Instructions: Address bits and Control bits

Install the board on to the row of pins as show in the picture and connect your Raspberry-Pi as normal to a monitor, mouse, keyboard and USB power supply.

Note: The RF transmitter add-on board must be connected securely first before powering on the R-Pi. Connecting after the R-Pi is on may result in the device freezing.

The pin header connects to the add-on board as follows to allow you to control the GPIO lines as outputs to drive the radio frequency transmitter.

Figure 2 (GPIO pin header)

The board will communicate with the ENER002 radio controlled sockets using Each board transmits a frame of information using On-Off-Keying (OOK) which is a basic form of Amplitude Shift Keying (ASK). This frame includes source address (20 bits) and control data (4 bits).

Here are the pairs of codes using D0-D3 signals that can be sent to control sockets.

D3	D2	D1	D0	Meaning		D2	D1	D0	Meaning
1	0	1	1	All on	0	0	1	1	All off
1	1	1	1	socket 1 on	0	1	1	1	socket 1 off
1	1	1	0	socket 2 on	0	1	1	0	socket 2 off
1	1	0	1	socket 3 on	0	1	0	1	socket 3 off
1	1	0	0	socket 4 on	0	1	0	0	socket 4 off

The receivers within the ENER002 have 4 address slots and the above codes are the combinations to control them.

There are a maximum of 4 channels per address. Users can alter the address of the Pi to increase the number of channels by changing the following line:

HOUSE_ADDRESS = None # Use default energenie quasi-random address 0x6C6C6 ##HOUSE_ADDRESS = 0xA0170 # Captured address of David's RF hand controller

This can be found in Legacy.py

CODE Word

Code word consists of full set of serial data format. The combination is as follow:

Sync. 20 Address Bits (C0~C19) 4 Data Bits (D0~D3)	Sync.	20 Address Bits (C0~C19)	4 Data Bits (D0~D3)
--	-------	--------------------------	---------------------

Each code word consists of 20 address bits, 4 data bits and a synchronous bit. The

	Sync	CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	DO	D1	D2	D3
--	------	----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	----	----	----	----